A COUNTER-EXAMPLE TO A CONJECTURE OF FRIEDLAND

BY

TAKASHI YOSHINO

Department of Mathematics, College of General Education, Tôhoku University, Kawauchi, Aoba-ku, Sendai 980, Japan

ABSTRACT

In 1982, S. Friedland proved that a bounded linear operator A on a Hilbert space is normal if and only if

$$(\alpha I + A + A^*)^2 \ge AA^* - A^*A \ge -(\alpha I + A + A^*)^2$$
 for all real α .

And he conjectured the inequality $(\alpha I + A + A^*)^2 \ge AA^* - A^*A$ for all real α will imply that $A^*A - AA^* \ge 0$, i.e., A is hyponormal. But his conjecture is incorrect. In this note I'll give a counter-example for his conjecture.

THEOREM: There is a non-hyponormal operator A which satisfies the inequality $(\alpha I + A + A^*)^2 \ge AA^* - A^*A$ for all real α .

Proof: For an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ of a Hilbert space H, let $Ae_0 = ae_1$ and $Ae_n = e_{n+1}(n=1,2,...)$ where

$$1 < a \leqq \sqrt{\frac{5 - 2\sqrt{2}}{2}}.$$

Then A is not hyponormal as for any $x = \sum_{n=0}^{\infty} \lambda_n e_n \in H$ the following equality holds:

$$\langle (AA^* - A^*A)x, x \rangle = ||A^*x||^2 - ||Ax||^2$$

$$= ||a\lambda_1 e_0 + \lambda_2 e_1 + \dots ||^2 - ||a\lambda_0 e_1 + \lambda_1 e_2 + \dots ||^2$$

$$= \{a^2 |\lambda_1|^2 + |\lambda_2|^2 + \dots \} - \{a^2 |\lambda_0|^2 + |\lambda_1|^2 + \dots \}$$

$$= -a^2 |\lambda_0|^2 + (a^2 - 1)|\lambda_1|^2$$

Received November 4, 1990 and in revised form February 6, 1991

and a > 1.

Since

$$\begin{aligned} &\|(\alpha I + A + A^*)x\|^2 \\ &= \|\alpha \sum_{n=0}^{\infty} \lambda_n e_n + a\lambda_1 e_0 + (a\lambda_0 + \lambda_2)e_1 + \cdots\|^2 \\ &= \|(\alpha \lambda_0 + a\lambda_1)e_0 + (a\lambda_0 + \alpha\lambda_1 + \lambda_2)e_1 + (\lambda_1 + \alpha\lambda_2 + \lambda_3)e_2 + \cdots\|^2 \\ &= |\alpha \lambda_0 + a\lambda_1|^2 + |a\lambda_0 + \alpha\lambda_1 + \lambda_2|^2 + |\lambda_1 + \alpha\lambda_2 + \lambda_3|^2 + \cdots \end{aligned}$$

we have

$$\langle (\alpha I + A + A^*)^2 x, x \rangle - \langle (AA^* - A^*A)x, x \rangle$$

$$\geq |\alpha \lambda_0 + a\lambda_1|^2 + a^2 |\lambda_0|^2 - (a^2 - 1)|\lambda_1|^2 \quad \text{by (1)}$$

$$= (\alpha^2 + a^2)|\lambda_0|^2 + \alpha a(\lambda_0 \bar{\lambda}_1 + \bar{\lambda}_0 \lambda_1) + |\lambda_1|^2.$$

If $|\alpha| \le a/\sqrt{a^2-1}$, then $\alpha^2 a^2 \le \alpha^2 + a^2$ and hence we have

$$\langle (\alpha I + A + A^*)^2 x, x \rangle - \langle (AA^* - A^*A)x, x \rangle$$

$$\geq \alpha^2 a^2 |\lambda_0|^2 + \alpha a(\lambda_0 \bar{\lambda}_1 + \bar{\lambda}_0 \lambda_1) + |\lambda_1|^2 \quad \text{by (2)}$$

$$= |\alpha a \lambda_0 + \lambda_1|^2 \geq 0.$$

Therefore

(3)
$$(\alpha I + A + A^*)^2 \ge AA^* - A^*A$$
 for all real α such as $|\alpha| \le \frac{a}{\sqrt{a^2 - 1}}$.

Next we have $\|(\alpha I + A + A^*)x\| \ge |\alpha| \|x\| - \|A + A^*\| \|x\| \ge (|\alpha| - 2a)\|x\|$ because $\|A\| = a$ and the assumption

$$1 < a \leqq \sqrt{\frac{5 - 2\sqrt{2}}{2}}$$

implies that

$$0 < \sqrt{a^2 - 1} \le 1 - \frac{\sqrt{2}}{2}$$
 and $\frac{a}{\sqrt{a^2 - 1}} \ge \frac{a}{1 - \frac{\sqrt{2}}{2}} = (2 + \sqrt{2})a$.

And then, for each α such as $|\alpha| > \frac{\alpha}{\sqrt{\alpha^2-1}}$, we have

$$\|(\alpha I + A + A^*)x\| \ge (\frac{a}{\sqrt{a^2 - 1}} - 2a)\|x\| = \sqrt{2}a\|x\|$$

and

$$\langle (\alpha I + A + A^*)^2 x, x \rangle = \|(\alpha I + A + A^*)x\|^2 \ge 2a^2 \|x\|^2$$

$$\ge \|AA^* - A^*A\| \|x\|^2 \quad \text{because } \|A\| = a$$

$$\ge \langle (AA^* - A^*A)x, x \rangle.$$

Hence

(4)
$$(\alpha I + A + A^*)^2 \ge AA^* - A^*A$$
 for all real α such as $|\alpha| > \frac{a}{\sqrt{a^2 - 1}}$.

By (3) and (4), we have $(\alpha I + A + A^*)^2 \ge AA^* - A^*A$ for all real α .

References

1. S. Friedland, A characterization of normal operators, Isr. J. Math. 42 (1982), 235-240.